

PII: S0040-4039(96)00914-8

Syntheses of Urethano-, Amido- and Sulfonamido-[60] fullerenes by Nucleophilic Substitutions with 1,2-(2,3-Dihydro-1*H*-azirino)-[60] fullerene

Johannes Averdung, Christian Wolff and Jochen Mattay*

Institut für Organische Chemie, Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Abstract: C_{60} NH 1 and the acyl and tosyl chlorides 2 or acetic anhydride 4 in 1,2-dichlorobenzene solution and pyridine give the stable fulleroaziridine derivatives **3a-d** and **5** by nucleophilic substitution. Copyright © 1996 Elsevier Science Ltd

Among the methods of exohedral functionalization of [60] fullerene the syntheses of fulleroaziridines play an important role. $^{1-5}$ In general fulleroaziridines are formed by addition of nitrenes to $C_{60}^{1,2}$ or by photochemically induced rearrangement of azafulleroids. 3 We have recently reported the synthesis of fulleroaziridines by addition of photochemically generated acylnitrenes 2 and arylnitrenes. 3 In addition we described the synthesis of the parent aziridino-fullerene C_{60} NH (1) by elimination of CO_2 and isobutene from 1,2-(N-tert-butyloxycarbonyl-4,5-dihydro-1H-azirino)-[60] fullerene. 4 . 5 We are now reporting the syntheses of the urethanes 3 a and 3 b, of the amides 3 c and 5 and of the sulfonamide 3 d by nucleophilic substitution with C_{60} NH (1).

The first nucleophilic substitution of a secondary amino-[60] fullerene derivative was the synthesis of N-acylated fulleropyrrolidines, which was reported by Maggini, Prato et al. Analogously we also used pyridine as basic reagent. In a typical experiment we slowly added a solution of an excess of the chlorides 2 or acetic anhydride 4 in 10 ml of 1,2-dichlorobenzene to 50 mg (0.068 mmol) of $C_{60}NH$ (1)4 dissolved in 15 ml of a 2:1 mixture of 1,2-dichlorobenzene and pyridine at 70 °C. The substituted fullerenes 3a-d and 5 were isolated by filtering the reaction mixtures over a silica column (with toluene), followed by evaporation of the solvents in vacuum. Finally the products were purified by a second column filtration over silica with toluene and toluene/n-hexane mixtures, respectively (see Table 1). Due to their polar substituents compounds 3 exhibit a much higher solubility than C_{60} in all organic solvents. The ^{13}C NMR (75 MHz) spectra of the fullerene derivatives 3b-d and 5 show the typical number of fullerene peaks of C_{2y} symmetrical aziridino-

[60] fullerenes¹⁻⁵: 16 lines (13 have a relative intensity of 4, and 3 have a relative intensity of 2 carbons) in the sp² region and one signal in the area between 84 and 80 ppm. This indicates a fast rotation around the amide bond as compared to the NMR time scale. Surprisingly the chiral compound 3a exhibits a different

Table 1					
compound	3a	3b	3c	3d	5
ratio 1:2 (1:4)	1:12.5	1:13	1:25	1:50	(1:57)
reaction time	1h	1 h	1h	7 h	26h
isolated yield	95%	78%	25%	82%	22%

number of fullerene lines in its ¹³C NMR spectrum.⁷ Beside the single resonance of the two sp³ fullerene carbons at 80.84 ppm we found 22 fullerene resonances (17 have a relative intensity of 2, 3 have a relative intensity of 4, and 2 have a relative intensity of 6 carbons).⁷ A ¹³C NMR experiment at 333 K gave no evidence for the assumption that the unusual number of fullerene resonances is an effect of a similar rate of rotation around the amide bond compared to the NMR time scale.⁶ The comparison of the ¹³C NMR spectra of the compounds 3a and 1,2-(*N-tert*-butyloxycarbonyl-4,5-dihydro-1*H*-azirino)-[60]fullerene⁴ shows that the chemical shifts of the sp² fullerene resonances of both resemble one another, but in the case of the (+)-(1S)-menthyl derivative 3a some of the resonances are splitted. Therefore we assume that the unusual number and splitting of fullerene lines of the chiral compound 3a are based on diastereotopic fullerene carbons. The UV-VIS spectra of 3 and 4 confirm that they retain the electronic properties of C₆₀.

Compared to the amido-[60]fullerenes **3c** and **5** the sulfonamido-[60]fullerene **3d** and the urethano derivatives **3a** and **3b** are formed in higher yields, which confirms the report of Banks et al. about the quantitative substitution of C₆₀NH **1** with 1,2:3,4-di-O-isopropylidene-D-galactopyranose-6-chloroformate by applying similar conditions. ⁵ In summary, this investigation clearly shows that exohedral functionalizations of fullerenes can be performed even to the second sphere using **1** as a synthetic block of a first sphere-type.

Acknowledgement: Financially support by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), the European Community (HCM programme), the Fonds der Chemischen Industrie, and Hoechst AG is gratefully acknowledged. We thank E. Schneider (University of Kiel) and Dr. H. Luftmann (University of Münster) for MS analysis.

References and Notes

- a) T. Ihisda, K. Tanaka, T. Nogami, Chem. Lett. 1994, 561-562. b) M. Yan, S. X. Cai, J. F. Keana, J. Org. Chem. 1994, 59, 5951-5954. c) M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith, D. W. H. Rankin, J. Chem. Soc., Chem. Commun. 1994, 1365-1366. d) S. Kuwashima, M. Kubota, K. Kushida, T. Ishida, M. Ohashi, T. Nogami, Tetrahedron Lett. 1994, 35, 4371-4374.
- 2. J. Averdung, J. Mattay, D. Jacobi, W. Abraham, *Tetrahedron* 1995, 51, 2543-2552.
- 3. J. Averdung, J. Mattay, Tetrahedron 1996, 52, 5407-5420.
- 4. J. Averdung, H. Luftmann, J. Mattay, K.-U. Claus, W. Abraham, Tetrahedron Lett. 1995, 36, 2957-2958.
- Independently the synthesis of 1 was also reported by: M. R. Banks, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith, J. R. A. Millar, A. T. Taylor, J. Chem. Soc., Chem. Commun. 1995, 885-886.
- M. Maggini, A. Karlsson, L. Pasimeni, G. Scorrano, M. Prato and L. Valli, Tetrahedron Lett. 1994, 35, 2985-2088
- 7. The new compounds **3a-d** and **5** show correct mass-spectrometric and spectroscopic data. ¹³C NMR data of: **3a** (75 MHz, (D₂)-1,1,2,2-tetrachloroethane): δ = 155.93 (C=O), 145.01, 145.00, 144.91, 144.90, 144.64, 144.58, 144.31, 144.29, 144.18, 143.78, 143.56, 143.55, 143.53, 143.51, 142.94, 142.91, 142.54, 141.97, 141.88, 140.94, 140.80, 139.74 (22 sp²-C fullerene resonances) 80.84 (sp³-C fullerene resonance), 79.40, 46.86, 40.72, 34.00, 31.45, 25.98, 23.13, 21.97, 20.71, 16.03 ppm. **3d** (75 MHz, (CS₂/CD₂Cl₂ (5:2)): δ = 145.80, 145.64, 145.47, 145.38, 145.32, 144.86, 144.49, 144.33, 144.24, 143.70, 143.50, 143.45, 143.14, 142.53, 142.21, 141.67, 141.27, 136.36, 130.44, 128.87, 80.30, 22.21 ppm.